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A b s t r a c t

Significant progresses have been made in adoptive cell therapy with CAR-T 
cells for cancers, especially for hematological malignancies. However, the 
treatment of solid tumors still poses a tremendous challenge and remains 
an unmet medical need. Several factors are held responsible for the inade-
quate responses: tumor heterogeneity, inefficient homing of T cells to tumor 
tissues, immunosuppressive microenvironment and the shortage of specific 
antigens shortage. Mesothelin is a cell-surface glycoprotein highly expressed 
in many types of solid tumors. As such, it has attracted much attention as 
a molecular target in cancer immunotherapy. Here, we delineate the barriers 
imposed by solid tumors on CARs, outline the rationale of mesothelin as 
a  target for immunotherapy, summarize the preclinical and clinical results 
of mesothelin-targeted therapies, and extrapolate the expected results of 
CAR-T cells directed against mesothelin for solid tumors.

Key words: mesothelin, adoptive cell therapy, chimeric antigen receptor, 
solid tumors.

Introduction

Malignant tumors, especially the solid ones, are the leading cause of 
mortality. Surgical resection, chemotherapy and radiotherapy are still 
the mainstay treatment modalities for solid tumors. The endeavors to 
improve clinical outcomes turned out to be disappointing. Even with 
standard treatments, it is very frequent that cancers become resistant 
with relapses and severe side effects. Numerous factors cause the de-
layed diagnoses in the large majority of the cancer patients, and optimal 
treatments are not applicable for those at the advanced stages. For the 
patients with distal metastasis, the treatments of choice are palliative. 
The results after analyzing 36 different types of tumors in 185 countries 
revealed approximately 18.1 million new cancer cases and 9.6 million 
cancer-related death worldwide in 2018. The top 10 different types of 
solid tumors account for over 65% of newly diagnosed cases and mortal-
ity [1]. The high lethality of solid tumors pose a great threat to patients 
and has become an enormous burden globally. Therefore, it is imperative 
to find new and more effective treatments to cure them.
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Adoptive cell therapy (ACT) is carried out 
through ex vivo expansion, modification and 
transfer of immune cells to a recipient to elicit an 
anti-cancer effect [2]. A  recently-developed ACT 
approach is to generate tumor-specific T cells by 
introducing chimeric antigen receptor (CAR) into 
T cells (CAR-T) [3]. CARs endow T cells enhanced 
tumor-specific cytotoxicity, capability to disrupt 
tumor immunosuppressive microenvironment 
and to survive in cancer patients persistently [4]. 
The specificity of CAR-T cells rests on a  single 
chain antibody against a  tumor specific/associ-
ated antigen (TSA/TAA). Thus, careful selection of 
the antigen targets is critical to successful imple-
mentation of the CAR-T cell therapy. Mesothelin 
(MSLN), a membrane-bound surface glycoprotein 
expressed by various solid tumors, is emerging as 
a potential target for mesothelin-expressing ma-
lignancies due to its differential overexpression 
and tumorigenic characteristics in the develop-
ment and progression of cancers [5, 6].

CAR-T for cancer adoptive cell 
immunotherapy

CARs are synthetic receptors able to enhance 
the anti-tumor efficacy of T cells [7]. A  regular 
CAR consists of an extracellular single-chain vari-
able fragment (scFv) of an antibody to recognize 
targets, a  hinge region to provide flexibility for 
the scFv, a  transmembrane region, intracellular 
co-stimulatory molecules and CD3z chain [8]. 
Upon specific binding of the scFv to TSAs/TAAs, 
the signaling domains stimulate T-cell prolifera-
tion, cytolysis and cytokine secretion, eventually 
eradicating target tumor cells (Figure 1). 

CAR-T cells have demonstrated several advan-
tages in the context of adoptive cell therapy [3, 
5]. Firstly, CARs recognize cell surface molecules in 
a  major histocompatibility complex (MHC)-inde-
pendent manner without compromising the speci-

ficity and magnitude of T cell response, which helps 
maintain anti-cancer efficacy even if the expres-
sion of MHC is down-regulated in malignancies. 
Secondly, CAR can recognize a wide array of anti-
gens expressed on the surface of tumor cells in-
cluding proteins, carbohydrates and gangliosides. 
Thirdly, the modification of intracellular signaling 
domains may compensate the down-regulation of 
co-stimulatory molecules induced by tumor cells. 
Incorporation of costimulatory molecules such 
as CD28 and 4-1BB significantly enhances T-cell 
expansion, survival, cytokine secretion and tumor 
lysis. Lastly, because of their ability to expand  
ex vivo rapidly, CAR-T cells may become the pri-
mary candidate for future “off-the-shelf” therapy.

CAR-T cell therapy has demonstrated satisfac-
tory efficacy for hematological malignancies in-
cluding acute lymphocytic leukemia (ALL), chron-
ic lymphocytic leukemia (CLL), and lymphoma in 
multiple centers worldwide [9]. A  meta-analysis 
of the efficacy of anti-CD19/CD20 CAR-T cells in 
relapsed or refractory B-cell malignancies demon-
strated that the rate of the pooled response, 
6-month and 1-year progression-free survival 
(PFS) were 67%, 65.62% and 44.18%, respectively 
[10]. Another multicenter study including 391 pa-
tients with anti-CD19 CAR-T demonstrated that 
the pooled rate of complete response and partial 
response were 55% and 25%, respectively [11]. 
In accordance with findings, a systemic review of  
16 studies including 195 patients with B-cell ma-
lignancies showed an overall response rate of 61% 
with complete response being 42% and partial re-
sponse being 19% [12]. These results are encour-
aging with regards to the treatment of relapsed/
refractory B lymphoma and leukemia, especially 
in ALL patients. Better results have been report-
ed by several groups showing a response rate of 
over 80% in patients with relapsed and refractory 
B-ALL receiving anti-CD19 CAR-T cells [13, 14]. 
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Figure 1. Schematic structure of chimeric antigen receptor (CAR). CAR consists of a single chain variable fragment 
(scFv), the hinge and transmembrane (TM) region, co-stimulatory molecules (CM) and human CD3z chain

TCR complex – T cell receptor complex, ITAM – immunoreceptor tyrosine-based activation motif.
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Despite this success, CAR-T cell therapy does 
have some limitations. The recognition of CAR-T 
cells solely depends on the cell surface antigen, 
while T cell receptor (TCR) is able to interrogate 
the intracellular proteome of tumor cells. In addi-
tion, adverse effects have been reported in differ-
ent clinical studies with CAR-T cell therapy such 
as on-target/off-tumor toxicities, cytokine release 
syndrome (CRS), tumor lysis syndrome (TLS), mac-
rophage activation syndrome (MAS), neurological 
damage, etc.  More comprehensive studies are 
warranted to tackle these safety issues, possibly 
by selecting optimal target antigens, controlling 
the cells through integrating gene switch, etc. 
[15, 16]. Furthermore, the results of the CAR-T cell 
therapy are disappointing because of the inherent 
features of solid tumors.

Challenges for CAR-T of solid tumors

The success in the treatment of hematologi-
cal malignancies raises a great interest to utilize 
CAR-T cells to treat solid tumors with CAR-T cells. 
However, several obstacles must be tackled before 
its successful use [16, 17]. The heterogeneity of 
solid tumors is an important factor limiting CAR-T 
cell immunotherapy. It has been noticed spatial-
ly and temporally at the genetic, transcriptomic, 
proteomic and cellular levels [18, 19]. Spatial het-
erogeneity can be detected in a  single tumor at 
the primary and metastatic sites. In addition, it 
can also be found in different tumors in the same 
patient. Even worse, cancer cells may decrease or 
change the expression of surface antigens during 
treatment and tumor progression, causing the re-
currence of cancer with poor prognosis [20]. An 
improved understanding of tumor heterogeneity 
in primary and metastatic tumors may help devel-
op a quick and comprehensive approach to identi-
fy the tumor phenotypes for efficient and target-
ed therapies by virtue of longitudinal analyses of 
the potential tumor evolution through the disease 
courses at different stages and the changes of bio-
logical features of tumors over time [21–23].

Efficient migration of CAR-T cells to tumor sites 
is pivotal to optimal antitumor efficacy, especially, 
for solid tumors [16]. Circulating B cells in hema-
tological malignancies help intravenously infused 
engineered T cells to travel to tumor sites. On the 
contrary, special physical barriers in solid tumors 
make such movement more difficult and these in-
clude higher intensity of blood vessels, wider gap 
of vessel walls, extensive vascular leakage, extra-
cellular matrix proteins, etc. [17, 24]. In addition, 
T cell migration to tumor sites requires integrins, 
chemokines, and chemokine receptors. However, 
genetic modification of the cell cultured in vitro 
may cause the loss of chemokine receptors, hin-
dering accurate localization of CAR-T cells to the 

tumor tissues [25]. These factors may cause poor 
trafficking of CAR-T cells to solid tumors. Inten-
sive and extensive studies have been performed 
to tackle these problems and these include engi-
neering T cells with chemokine receptors (such as 
CXCR2, CCR2b, CXCR4), incorporation of hepara-
nase to degrade the extracellular matrix (ECM), 
and regional delivery of CAR-T cells [26–28].

Even after translocation into tumor sites, the 
CAR-T cells are in a hostile environment with nu-
merous immunosuppressive factors that impair 
their anti-cancer functions by deactivation of T 
cells [29]. For example, some intrinsic pathways 
upregulate the expression of inhibitory molecules 
such as PD-1, CTLA-4 and TGF-b [30, 31]. In ad-
dition, aberrant metabolism is common in solid 
tumors and may affect the biological behaviors of 
T cells. Further, T cells are difficult to survive due 
to the lack of arginine or tryptophan, hypoxia, and 
the acidified extracellular matrix because of hy-
poxia. Finally, a dysregulated cytokine profile (e.g. 
IL-15) in tumor may change the fate of the infil-
trated T cells [32]. To complicate the matters, tu-
mor stromal cells also produce molecules such as 
TGF-b, IL-10, and indoleamine-2,3-dioxygenase, 
leading to suppression of the effector functions 
of T cells. Numerous strategies such as addition-
al modification of CAR-T cells and combinatorial 
approaches have been tested to surmount these 
barriers and enhance CAR-T cells efficacy. These 
include engineering CAR-T cells expressing dom-
inant negative PD-1 receptors or anti-PD-1/PD-L1 
agents, engineering CAR to target stromal cells, 
addition of the oncolytic virus or inhibitors of neg-
ative regulators [29].

MSLN, a tumor associated antigen in various 
solid tumors

The MSLN gene is located on human chromo-
some 16p13.3 and composed of 17 exons occupy-
ing 8kb of the human genome. Its cDNA is 2138 
bp with an open reading frame of 1884 bp, and 
encodes a  69-kDa precursor protein (628 amino 
acids) [33, 34]. After cleavage by the furin pro-
tease, a  40-kDa C-terminal fragment referred to 
as MSLN still attaches to the membrane, while 
a soluble 32-kDa N-terminal fragment is released 
into the plasma (Figure 2). This soluble molecule 
is named a  megakaryocyte potentiating factor 
(MPF) due to its capability of inducing megakaryo-
cyte proliferation in vitro [35]. MSLN, a commonly 
membrane-bound, glycosylphosphatidylinositol 
(GPI)-linked protein, has 2 variants. Variant-1 with 
an 8 amino acid insertion is membrane bound, 
whereas Variant-2 is shed from membrane-bound 
MSLN and becomes soluble due to the lack of 
GPI-anchor signal sequence [36]. The soluble form 
(also known as soluble MSLN-related peptide, 
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SMRP) was initially identified in the plasma of 
patients with ovarian carcinoma using the OV569 
mAb.

The biological function of MSLN remains large-
ly unknown and seems nonessential for normal 
tissues. MSLN-deficient mice grow and reproduce 
normally without a  detectable phenotype [37]. 
Nevertheless, it may be involved in cell migration 
and spreading, the promotion of proliferation, 
inhibition of apoptosis and chemotherapy resis-
tance in solid tumors. MSLN can act bidirection-
ally: either interacting with its receptor CA125/
MUC16, or directly activating intracellular path-
ways via its GPI domain. The interaction between 
mesothelin-CA125 induces a heterotypic cell ad-
hesion resulting in the spreading of malignancies 
in the body cavities [38]. Overexpression of MSLN 
enhances proliferation and migration of cells by 
constitutive activating of nuclear factor κB (NF-κB) 
and upregulating of MMP-7 and MMP-9 through 
MAPK pathways [39–41]. Further, MSLN prevents 
the drug-induced release of pro-apoptotic TNF-a 
by activating Akt/PI3K pathway, enhances the ex-
pression of antiapoptotic genes such as Bcl-2 and 
Mcl-1, and inhibits the expression of pro-apoptotic 
factors such as Bad and Bax [42]. However, much 
needs to be done to unveil the exact function of 
MSLN in cancer development and progression.

A  weak expression of MSLN has been found 
in the mesothelial cells of the pleura, peritone-
um, and pericardium, fallopian tubes, trachea, 
cornea and tonsils. However, it is overexpressed 
on various solid tumors including mesotheliomas, 
pancreatic adenocarcinomas, ovarian cancers, 
non-small lung cancers, etc. [5]. MSLN is over-
expressed in 95% of malignant mesothelioma 
(MM) patients of the epithelioid form. No over-
expression of MSLN is detected in the sarcoma-
toid form, and the biphasic variant has a  low to 
intermediate MSLN expression depending on the 
percentage of epithelial components [43]. MSLN 
is detected in 80-85% of pancreatic ductal ade-
nocarcinoma (PDAC) but not in normal pancreas 
and chronic pancreatitis [44]. A  previous report 

showed that MSLN was overexpressed in 68.8% 
of ovarian cancers and 24.2% of borderline-type 
tumors [45]. The mechanisms underlying overex-
pression of MSLN in different malignancies is not 
fully understood. Activation of the Wnt/b-catenin 
pathway and the methylation of the promoters 
of certain genes may be involved in the process. 
Clinical observations have demonstrated that an 
enhanced MSLN expression and elevated serum 
SMRP level are associated with progressing tumor 
burden, increasing stage, and poor overall survival 
[46, 47]. Tumor cells with an invasive phenotype 
express high amounts of membranous MSLN. It 
is overexpressed at lung adenocarcinoma (ADC) 
and correlates with tumor aggressiveness. Pa-
tients with a  high MSLN score had reduced OS 
and recurrence-free survival (RFS) compared with 
patients with a  low MSLN score in multivariate 
analyses [47].

MSLN as a target in cancer immunotherapy

The high incidence of overexpression and onco-
genic characteristic features make MSLN an ideal 
target for immunotherapy of solid tumors. A vari-
ety of strategies targeting MSLN are currently un-
der intensive research and these include as vac-
cines, a  monoclonal antibody, the antibody-drug 
conjugation, immunotoxin and adoptive cellular 
therapy (Figure 2).

An MSLN-based vaccine, CRS-207, is a  live-at-
tenuated Listeria monocytogenes strain engi-
neered to express human MSLN. After secretion, 
it incites innate and adaptive immune responses 
in antigen presenting cells (APC) to target MSLN 
[48]. Preclinical studies confirmed the ability of 
such vaccines to elicit an effective antitumor re-
sponse to MSLN-expressing tumors including 
PDAC through both T-cell- and antibody-mediated 
immunity [48, 49]. In addition, CRS-207 was well 
tolerated in a phase I clinical trial (NCT00585845). 
Immune induction and activation of MSLN-spe-
cific T-cell responses were observed. Among 13 
evaluable patients, four achieved stable dis-
ease, 37% of patients were alive for more than  

 Mesothelin precursor Mature mesothelin Vaccine Antibody CAR-T
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Figure 2. Mesothelin structure and strategies of immunotherapy. Mature mesothelin (40 kDa) is attached to the 
surface of the cell membrane after cleavage of the mesothelin precursor by furin protease, while a soluble 32-kDa 
N-terminal fragment (megakaryocyte potentiating factor, MPF) is released into the plasma

MSLN – mesothelin, APC – antigen presenting cells, ADC – antibody-drug conjugation, mAb – monoclonal antibody, CAR-T – 
chimeric antigen receptor-engineered T cells.
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15 months [50]. With these data, CRS-207 was 
combined with GVAX (GM-CSF gene modified tu-
mor vaccine) and low dose cyclophosphamide (Cy) 
for clinical evaluation. In a  phase II clinical trial 
(NCT01417000), Cy/GVAX combination with CRS-
207 improved OS of previously treated metastatic 
PDAC patients compared to Cy/GVAX alone (6.1 
vs. 3.9 months) [51]. Notably, no toxicities were 
observed in these patients. Besides, a cell-based 
vaccine (Meso-VAX), in which a  secreted MSLN 
anchored at the cell membrane, elicits antigen 
specific immunity and potent antitumor effects in 
mice by combining with IL-12 immunomodulator 
[52]. MSLN-specific DNA vaccine are also under 
investigation. CTGF/MSLN DNA with anti-CD40Ab 
and poly(I:C) vaccinated mice demonstrated ro-
bust anti-tumor effects with longer survival and 
less tumor volumes [53].

Amatuximab (MORAb-009) is a  humanized 
monoclonal antibody (mAb) against MSLN [54]. 
In preclinical studies, this mAb causes the death 
of the MSLN expressing cell lines by antibody de-
pendent  cell-mediated  cytotoxicity (ADCC), and 
inhibits the interaction between MSLN and  
CA-125. Two phase I  studies were conducted 
to investigate in vivo distribution and safety of 
111In-amatuximab in MSLN-expressing tumors 
(NCT01521325, NCT01413451), and the dosime-
try profile confirmed a  significant uptake of the 
mAb in both primary and metastatic tumors [55]. 
Another phase I  study (NCT00325494) in 24 pa-
tients with advanced MSLN-expressing cancers 
showed a good tolerance with mild drug-related 
hypersensitivity reaction and dose-dependent im-
munogenicity [56]. Although no objective partial 
tumor responses were reported in these studies, 
stable disease was achieved in a phase I clinical 
trial (NCT01018784). A subsequent phase II study 
(NCT00738582) in 89 patients with unresectable 
malignant pleural mesothelioma (MPM) has been 
conducted with Amatuximab alone or combina-
tion with pemetrexed and cisplatin. Objective re-
sponse and stable disease were achieved in 40% 
and 51% of patients, respectively [57].

Anetumab ravtansine (BAY94-9343) is an an-
tibody drug conjugated to DM4 (a  tubulin poly-
merase inhibitor) [58]. When the drug is bound 
and internalized by MSLN-expressing tumor cells, 
DM4 metabolites cause cell-cycle arrest and apop-
tosis. In a phase I trial (NCT02485119), it was well 
tolerated with an acceptable toxicity profile when 
intravenously infused every 3 weeks. Another 
phase I  trial (NCT01439152) showed that par-
tial responses (PR) and stable disease (SD) were 
19% and 47%, respectively [59]. Currently, some 
phase I and II trials testing BAY 94-9343 alone or 
in combination with chemotherapy are being car-
ried out. It has reached phase II as a single agent 

to treat pancreatic (NCT03023722) and lung can-
cers (NCT02839681). DMOT4039A is a humanized 
MSLN mAb conjugated to the antimitotic agent 
monomethyl auristatin E [60]. A  phase I  clini-
cal trial (NCT01469793) evaluated DMOT4039A 
in 40 PDAC and 31 ovarian cancer patients. The 
dose limiting toxicities (DLTs) were grade 3 hyper-
glycemia and grade 3 hypophosphatemia in the 
q3w schedule. Six patients had partial response 
at 2.4–2.8 mg/kg every 3 weeks. Some other ADCs 
targeting MSLN such as BMS-986148 and MDX-
1204 are under investigation.

SS1P is a recombinant protein drug consisting 
of the anti-MSLN Fv SS1 fused to PE38, a portion 
of the Pseudomonas exotoxin A  [61]. When in-
ternalized to the cytoplasm, it irreversibly modi-
fied elongation factor-2 to halt protein synthesis 
and induced apoptosis. Given its safety and tol-
erability in phase I monotherapy study, SS1P was 
combined with pemetrexed and cisplatin for the 
treatment of chemotherapy-naive patients with 
unresectable MPM (NCT01445392) [62]. This 
combinatorial therapy resulted in an objective 
response rate of 77% without overlapping toxic-
ity. However, the efficacy of SS1P is compromised 
due to the formation of the antidrug antibody. As 
such, SS1P is now being administered together 
with a  lymphocyte-depleting conditioning regi-
men of pentostatin and cyclophosphamide. This 
combination prevents anti-SS1P antibody forma-
tion and demonstrates a  remarkable antitumor 
effect in mesothelioma both in vitro and in vivo. 
LMB-100 (previously named RG7787) is a de-im-
munized RIT containing a  humanized anti-MSLN 
Fab fused to PE24 [63]. Given its reduced toxic-
ity and significant antitumor effect in preclinical 
studies, initial phase I-II studies are recruiting pa-
tients with MM (NCT02798536, NCT034367321) 
and PDAC (NCT02810418). Taken together, these 
results demonstrate the safety and feasibility of 
MSLN as a target for CAR-T cells immunotherapy.

MSLN CAR-T cells for solid tumors 
immunotherapy

To date, significant progresses have been made 
in the preclinical models using CAR-T cells target-
ing MSLN (CARTmeso). T cells transduced with 
anti-MSLN CAR (CD28-4-1BB-CD3z) using lenti-
viral vectors were evaluated for efficacy against 
MSLN-expressing tumor xenografts in NOD/scid/
IL2rg(–/–) mice [64]. Both intratumoral and intrave-
nous administration of CARTmeso cells resulted 
in significant shrinkage of tumors. In addition, 
intratumoral injection of RNA CAR-electroporat-
ed (4-1BB-CD3z) T cells caused regression of dis-
seminated human mesothelioma xenografts [65]. 
Further, a fully humanized MSLN-specific P4CAR-T 
(CD28-CD3z) cell was tested in vitro and these 
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cells demonstrated potent cytolytic function when 
cultured with MSLN-expressing tumor cells at 
least in part due to the production of proinflam-
matory cytokines and degranulation. Adoptive 
transfer of P4CAR-T cells resulted in the regression 
of large, established tumor in a xenogeneic mod-
el of human ovarian cancer [66]. A  recent study 
with fully humanized CARTmeso cells confirmed 
their ability to kill MSLM-positive pancreatic cells, 
to penetrate into the tumor, and to significantly 
suppress the growth of pancreatic cancer PDX en-
grafted tumor [67].

These promising results from preclinical mod-
els support the widespread clinical use of CART-
meso cells for the treatment of the MSLN-express-
ing solid tumors. Thus far, 25 clinical trials have 
been registered on the ClinicalTrials.gov, four of 
which have been completed. In two initial clinical 
studies, anti-MSLN CAR mRNA (4-1BB-CD3z) elec-
troporated T cells demonstrated good tolerance 
and minimal on-target/off-tumor toxicity [68, 69]. 
These CARTmeso have shown potent antitumor 
activity, the capability to infiltrate into solid tu-
mors and to induce humoral epitope spreading. 
One patient with MPM achieved partial response 
for 6 months, and 1 patient with pancreatic cancer 
achieved stable disease (NCT01355965). Stable 
diseases were found in 2 out of 6 patients with 
chemotherapy-refractory metastatic PDAC, with 
PFS time of 3.8 and 5.4 months (NCT01897415). 
A  lentiviral-transduced CARTmeso cells trial was 
conducted (NCT02159716) in patients with PDAC, 
MPM and ovarian cancer. The CARTmeso cells 
were well tolerated and could be detected in the 
blood for up to 30 days [70]. More trials evaluating 
CARTmeso cells alone or combinatorial strategies 
have been performed. In an ongoing study, four 
pancreatic cancer patients are being treated with 
T cells transduced with lentiviral anti-MSLN and 
anti-CD19 CAR (4-1BB-CD3z), which are expected 
to attack the B cells and prevent the antibody re-
sponse against CARTmeso cells (NCT02465983). 
Notably, a  more active, fully human anti-MSLN 
CAR is being tested to enhance persistence and 
efficacy in a phase I  trial (NCT03054298). Based 
on preclinical findings that local administration 
of CAR-T  cells was required for optimal antitu-
mor efficacy [26], one trial using iCasp9M28z-
CAR targeting MSLN was performed to test the 
safety of intrapleural administration of CART-
meso cells in patients with pleural malignancies 
(NCT02412469).

Future directions and conclusion

Prompt translation of CAR-T cells therapy to 
the clinical practice in CD19+ malignancies has 
raised intensive attention to adoptive cell thera-
py and engineered T cells. However, this approach 

has not gained momentum in solid tumors. Pre-
clinical and clinical studies suggest that MSLN-tar-
geted CAR-T cell therapy is a promising strategy 
due to its safety profile and potent antitumor ef-
ficacy in MSLN-expressing malignancies. Because 
of the complexity of solid tumors, more sophisti-
cated techniques are warranted to eradicate solid 
tumors with CARTmeso cells including modifying 
the CAR to secrete chemokines or cytokines recep-
tors, targeting the immunosuppressive tumor mi-
croenvironment such as intervening the immune 
checkpoint on T cells, incorporating suicide genes 
to improve the safety, etc. We are optimistic that 
with intensive research, CARTmeso cells will be-
come a potent and efficient treatment method for 
solid tumors in foreseeable future. 
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